

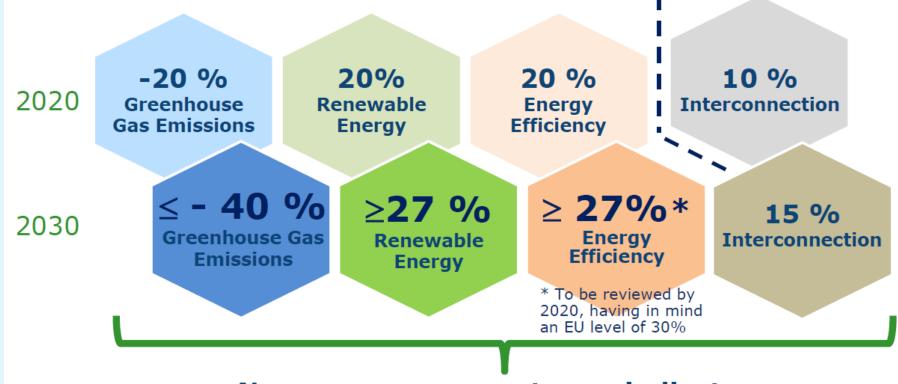
SBE 16 Istanbul, 13 October 2016

Improving the Energy Performance of Buildings towards the Nearly Zero Energy Concept

Oliver Rapf Executive Director Buildings Performance Institute Europe

About the Buildings Performance Institute Europe

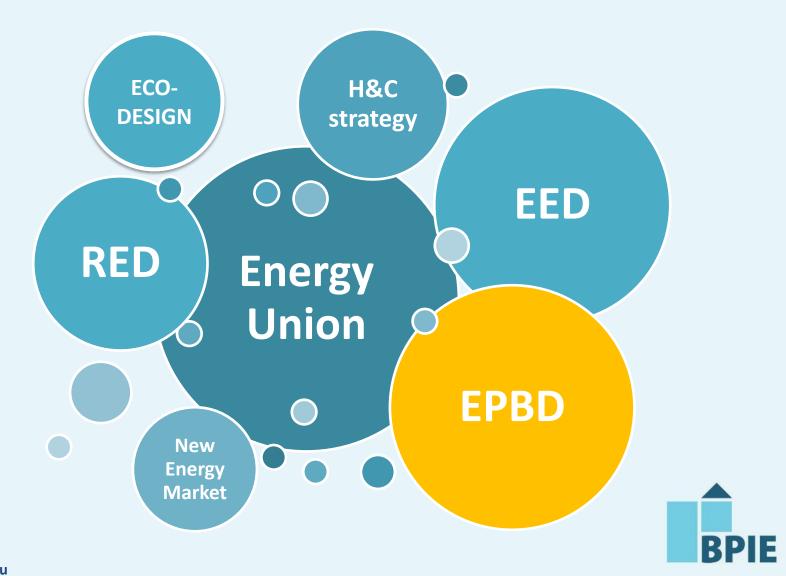
www.bpie.eu www.buildingsdata.eu



Content of this presentation

- △ The NZEB concept
- △ How do EU countries implement nZEBs?
- **Beyond nZEBs...**
- **Conclusions**

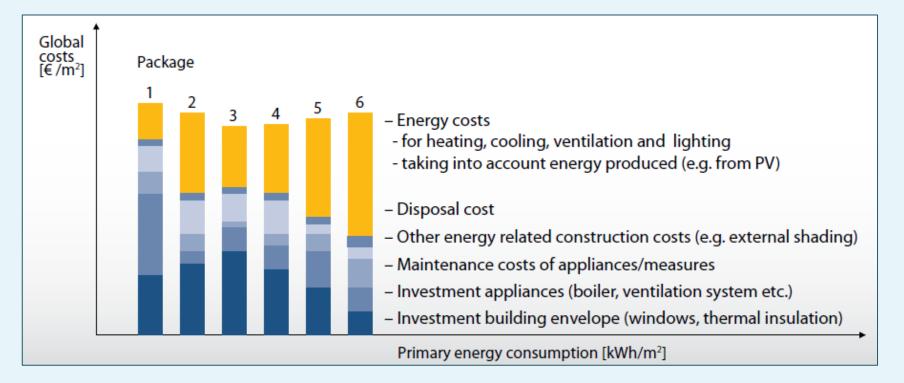
2030 framework for climate and energy policies



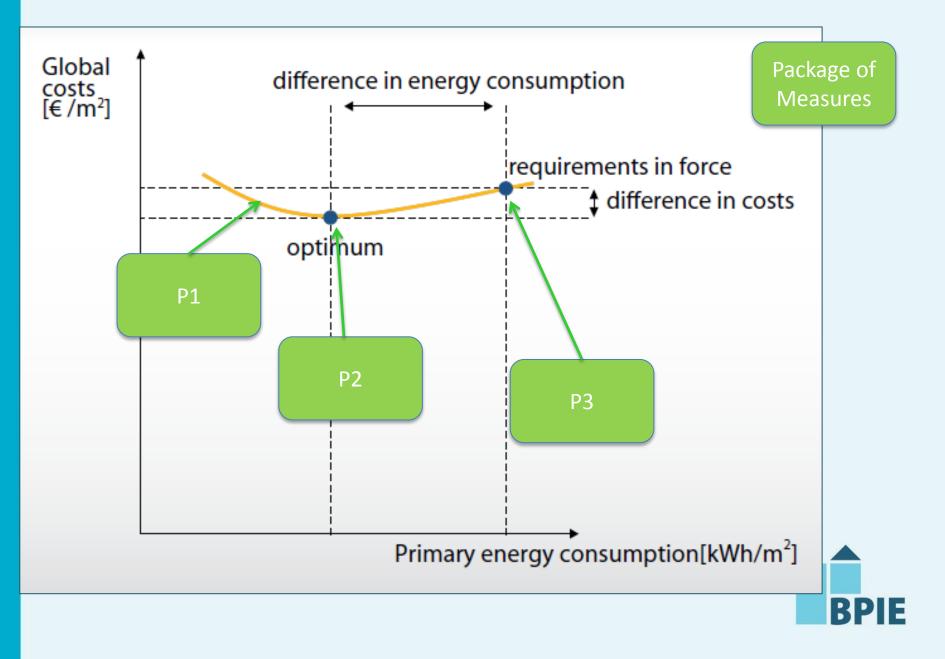
New governance system + indicators

Source: DG Energy

Building related EU policy framework


Minimum building performance requirements

- Minimum energy performance requirements for new buildings are a key element in European building codes
- The European Commission has introduced requirements to set standards in all Member States through the 2002 EPBD
- △ In 2002 no guidance on the ambition level was provided
- △ The recast of the EPBD in 2010 included a provision that national energy performance requirements should be set with the view to **achieving cost optimum levels**
- Member States to use and apply a methodology to calculate cost-optimal levels for their specific country
- Compare cost-optimal levels with the national requirements set in national building regulations


Cost optimal building performance requirements

△ Example cost calculations for different packages

Cost optimal building performance requirements

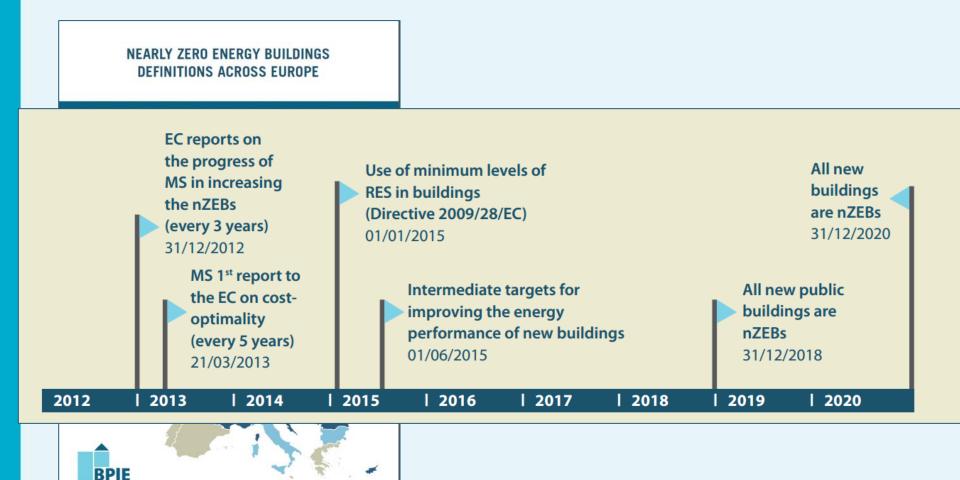
Nearly Zero Energy Building in the Energy Performance of Buildings Directive

of the Eur

DIR 'nearly zero-energy building' means a building that has a very high energy performance, as determined in accordance with Annex I. The nearly zero or very low amount of INIO energy required should be covered to a very significant extent by energy from renewable sources, including gard nd ir energy from renewable sources produced on-site or nearby;

One EU requirement -> 28 national implementation rules ! to the opinion of the

medium


eocedure (1).

ial

regard to Committee

Factsheet on NZEB definitions



www.bpie.eu/nzeb_factsheet.html

@BPIE eu

NZEB implementation in Europe – Status 2014

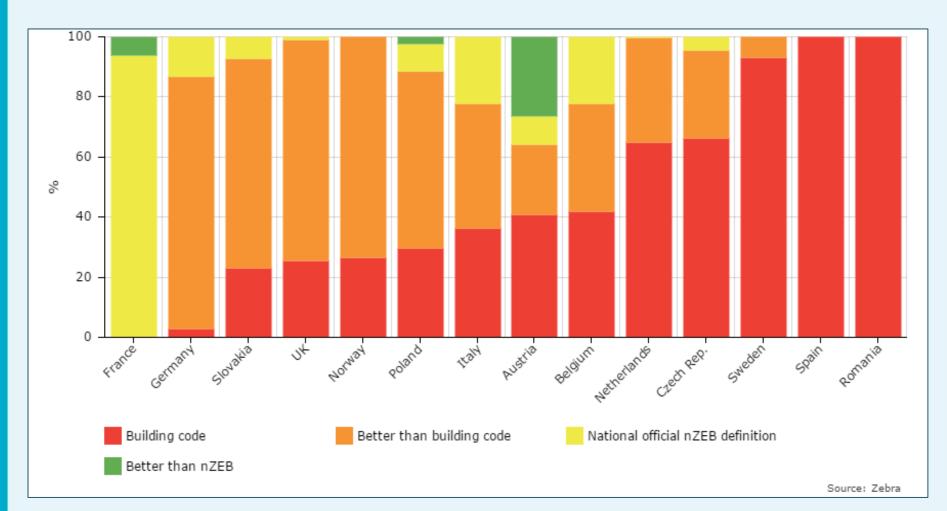
@BPIE eu

Large variations on NZEB definitions

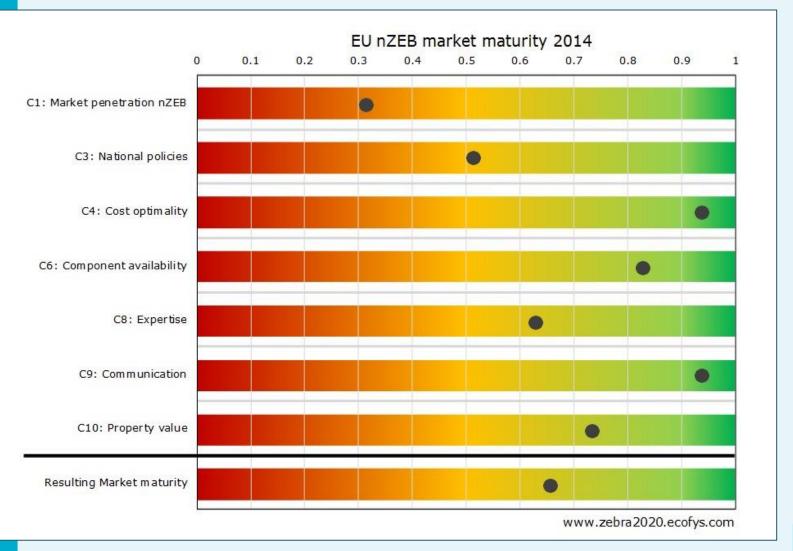
- △ 16 MS definition for new buildings
- △ 8 MS definition for existing buildings
- △ 8 MS share of RES explicitly stated
- △ Large range maximum primary energy (20-170kwh/m2)
- Some MSs: additional requirements

New buildings: NZEBs are no longer rocket science

NZEB as a paradigm shift


No more rocket-science, but...

- △ Low-energy buildings are complex systems and need holistic approaches
- △ Need for service-oriented 'one-stop-shop' business models
- △ Quality, compliance and control are essential
- Occupants advice is necessary



ZEBRA 2020 project

Distribution of new constructed dwellings in the year 2014 according to different building standards

Maturity of the EU nZEB market for 2014

BPIE

Source: www.zebra2020.eu

New NATO building

NATO will have a sustainable and environmental friendly new headquarters, with low environmental impact and optimized energy consumption. The new building provides for:

- reduced heating, cooling and ventilating power thanks to thermal insulation, thermal inertia and effective solar protection of glazing.
- optimized energy consumption thanks to geothermal and solar energy use, co-generation of electricity and heating and advanced lighting systems.

Innovative examples from MS

Case studies for exemplary nZEBs

Non-residential building (1/2)

Building Information		
Туре	School	
Year of completion	2011	
Surface	1379m ²	
Location	Babenhausen (Bayern)	

Total Primary Energy Requirement (heating, domestic hot water, electricity)	91 kWh/m²/yr
Annual heating demand	12 kWh/m²/yr
Heating load	13 W/m ²

Case studies for exemplary nZEBs

Non-residential building (2/2)

Building Envelope		
Construction method	Masonry construction	
Exterior walls	U=0.145 W/(m ² ·K); 25-30 cm concrete + 24 cm insulation WLG 035 (thermal conductivity) 035 + 40mm rain-screen cladding panel	
Floor in contact with the ground	U=0.153 W/	(m ² ·K); 10 cm lean concrete + 20 cm perimeter insulation WLG 040 + 20 cm base plate + 40 mm insulation WLG 040
Roof	U=0.141 W/(m²·К) ; 22 cm hollow core slab + 20 cm polyurethane (PUR, WLG 028) + 50 mm gravel	
Glassing surfaces	U _w =0.79W/	(m²·K) , U _g =0.5 W/(m²·K) g-value= 49%; triple glazing windows filled with argon
Air-tightness		0.37h ⁻¹
Systems		Systems
Mechanical ventilation with heat recovery (HR)Heating systemHot water	 Central ventilation system for administration rooms, classrooms and corridors. Decentralised ventilation system for toilets (HR 78%). Upstream-air heat exchanger systems for preheating the inlet air. 	
	eating system	Gas boiler system
	ot water	Electric boiler or electric water heater

BPIE

Case studies for exemplary nZEBs

Non-residential building (1/2)

Building Information	
Туре	Sports hall (fitness room)
Year of completion	2013
Surface	614 m ²
Location	Waganowice (Gmina Słomniki, southern Poland)

Total Primary Energy Requirement (heating, domestic hot water, electricity)	98 kWh/m²/yr
Annual heating demand	15 kWh/m²/yr
Heating load	10 W/m ²

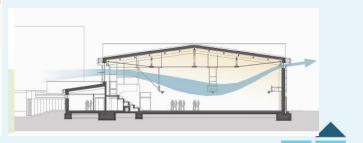
Financial Aspects

Construction cost

1,238 €/m² (5,068 zł/m²)

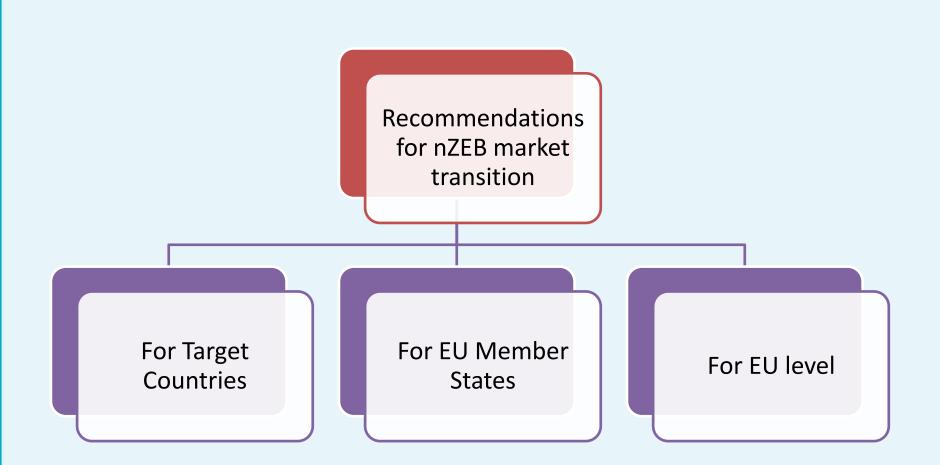
Case studies for exemplary nZEBs

Non-residential building (2/2)


Building Envelope		
Exterior walls	U=0.1 W/(m ² ·K); 300 mm polystyrene	
Roof	U=0.08-0.09 W/(m ² ·K); 400mm mineral wool	
Floor in contact with the ground	U=0.1 W/(m²·K)	
Glassing surfaces	U _w =0.8 W/(m²·K)	
Air-tightness	0.6h ⁻¹	

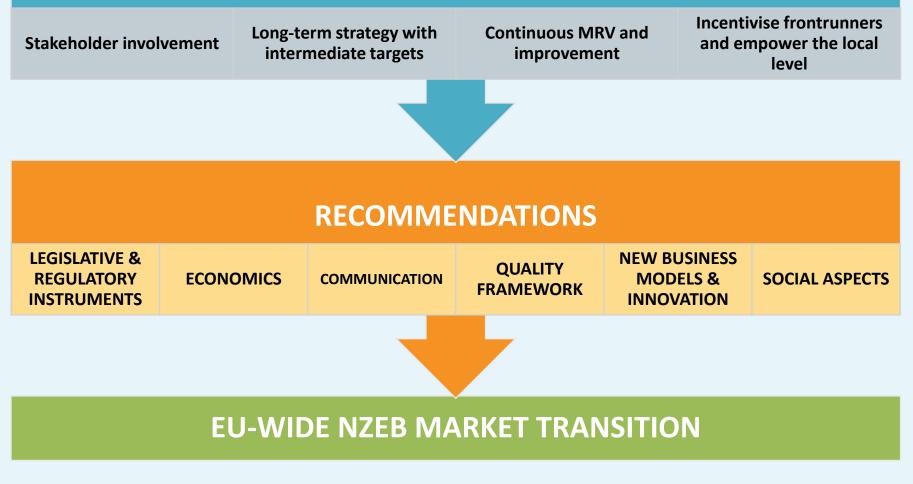
Systems

Ventilation	Mechanical ventilation with heat recovery >75% and summer ventilation
Heating system / Domestic hot water	Air source heat pump for heating and DHW (heat distribution: underfloor heating)



BPIE

Recommendations to accelerate the nZEB market transition



OVERARCHING CONDITIONS

Long list of recommendations...

A1 - Regulate building performance minimum standards through the building code

A2 - Improve the usage of Energy Performance Certificate, including a robust compliance system

A3 - Define a long term vision to guide the transformation of buildings as integrated parts of the society and the wider energy system

- A4 Provide building owners and investors with tailored advice according to specific renovation roadmaps
- A5 Encourage nZEB with public procurement processes
- A6 Implement standard methodologies for secure data gathering and assessment
- A7 Set long term voluntary targets for existing buildings
- A8 Mandatory upgrades for non-residential buildings, in case of new lease and tenancy
- B1 Incentivize the market uptake of nZEBs through active price signals
- *B2* Stimulate the market uptake of Energy Performance Contracting by renovating the public buildings in an ESCO-framework
- *B3 Financial support for (holistic or step-by-step) renovation according long term benchmarks*

B4 - Adapting new financing products that look long term and entitle nZEB investors with preferential mortgages

- B5 Clever legislation can mitigate the problem of split-incentives
- C1 Brand nZEB buildings as part of a positive sustainability narrative
- *C2 Promote demonstration projects to exemplify the benefits and viability of highly performing buildings*
- C3 Promote market uptake of nZEB buildings with information campaigns and easygrasping guidelines
- C4 -Facilitate effective knowledge sharing via adequate communication tools
- D1 Develop and consolidate quality frameworks for nZEB techniques and

technologies

D2 - Training building professionals with "NZEB and beyond" qualifications preparing them to build and upgrade the building stock for the future

D3 - Set up a detailed data collection of training programmes and cross-learning initiatives

D4 - Enhance the proficiency of certifiers in order to increase the reliability of Energy Performance Certifications

D5 -New technologies (IoT) allow us to collect and analyse performance data in a more effective way that was not possible some years ago

D6 - Improve coherence within and among states through better coordination

D7 - Install "One-Stop-Shops" for high energy performance buildings to reduce complexity and hassle

E1 - Foster the uptake of industrialised renovation through increased market confidence

E2 - Encourage new business models to aggregate demand to provide sufficient scale

E3 - Enable the market to embrace the new features of buildings as micro-energy hubs (nZEB2.0)

E4 - Incentivize the frontrunner entrepreneurs exploring new business models

- E5 Involve and empower local authorities in pilot projects
- F1 Explicitly define energy poverty and set up monitoring mechanisms
- F2 Include the benefits of alleviating (energy) poverty in nZEB decisions
- F3 Specify and increase support measures for vulnerable target groups customized to their profile
- F4 Move from fuel subsidies to energy efficiency measures

F5 - Improve all social housing to nZEB standards, in order to provide comfortable and affordable housing

F6 - Fighting air pollution to be an integrated part in NZEB

Need for skilled workforce

△ The better energy performance, the more important quality

- △ Can the consumer rely on the building products and services?
 - Maximum lifetime?
 - Expected performance?
 - Healthy and safe?

'Smart thermostat left me with no hot water and put my home at risk of fire'

Smart thermostats for boilers are the future, according to their advocates. But for the Stowe household in Suffolk, the latest eco device was a disaster

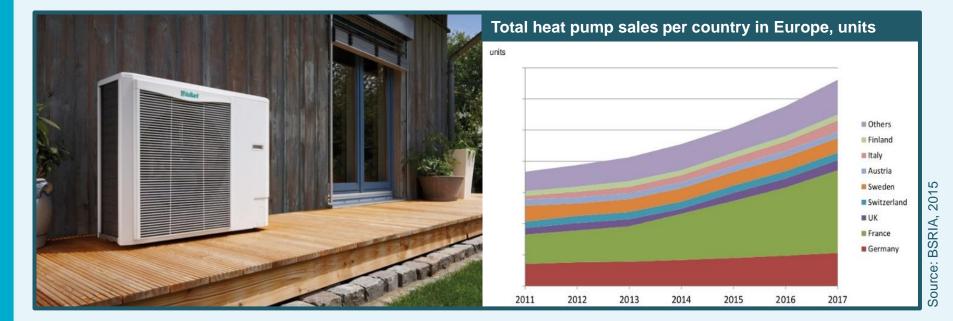
 Bill Stone suffered endless problems after the installation of a Nest smart thermostat system. Photograph: Martin Goldwin

Stowe, who lives with his wife and daughter in Harwich, Suffolk, was offered the £250 Nest smart heating controller for free when he signed up to a special npower gas and electricity tariff last December. But he claims that problems resulting

Beyond nearly Zero Energy Buildings.....

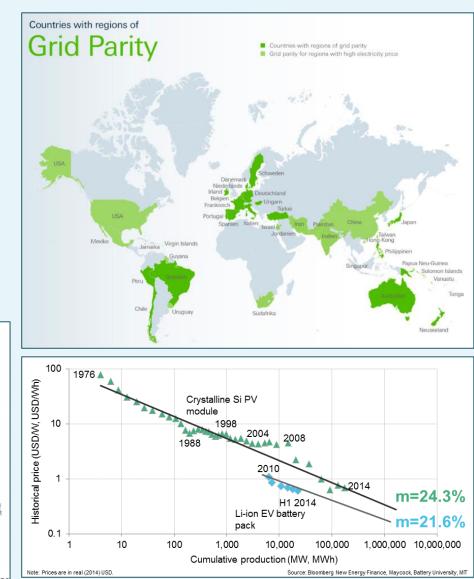
SMART BUILDINGS IN A DECARBONISED ENERGY SYSTEM

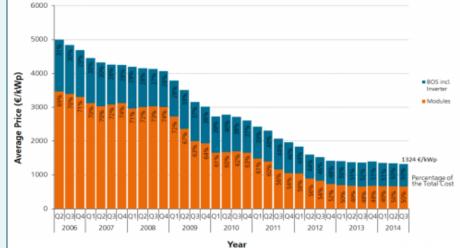
10 PRINCIPLES TO DELIVER REAL BENEFITS FOR EUROPE'S CITIZENS


Driver of change #1: imbalance of the power market



Source: National Geographic


Driver of change #2: power-load growth



Driver of change #3: viability RES & storage

- Deutsche Bank: "Over 50% of Countries Under Review are Likely at Grid Parity Today"
 Tipping point for combination of PV systems and batteries in Europe
 - to come around 2020



Driver of change #4: Internet of Things

Parrot FLOWER POWER

Heater ON / OFF

6:21pm

3 h 24min

solar

alinhoton I w

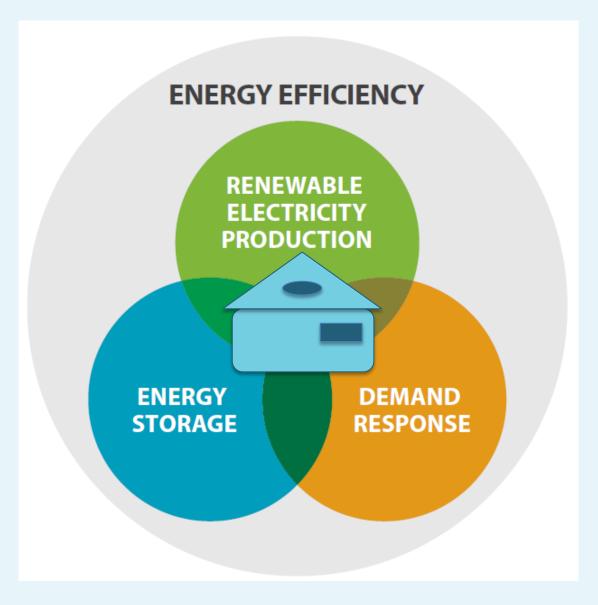
Today

Last Month

ifetime

MOEN N

1.138 W


59 Wh

0.01€

12.45 kWh

204 kWh 4835 kWh

Buildings are becoming micro-energy hubs

@BPIE_eu

Ten interrelated principles of buildings functioning as micro energy-hubs

PRINCIPLE 1 Maximise the buildings' energy efficiency first

PRINCIPLE 4 Incorporate demand response capacity in the building stock

PRINCIPLE 2 Increase on-site or nearby RES production and self-consumption

PRINCIPLE 5 Decarbonise the heating and cooling energy for buildings

PRINCIPLE 3

Stimulate energy-storage capacities in buildings

Ten interrelated principles of buildings functioning as micro energy-hubs (2)

PRINCIPLE 6 Empower end-users via smart meters and controls

PRINCIPLE 9 Build smart and interconnected districts

PRINCIPLE 7 Make dynamic price signals available for all consumers

PRINCIPLE 10

Building infrastructure to drive further market uptake of electric vehicles

PRINCIPLE 8

Foster business models aggregating micro energy-hubs

The future: buildings as micro energy-hubs

@BPIE_eu

Thank you for your attention!

Oliver Rapf Executive Director

oliver.rapf@bpie.eu www.bpie.eu

